This understanding of materials enables the engineers to select the most appropriate materials and use them with greatest efficiency whilst causing minimum pollution in their extraction, refinement and manufacturing. On account of the above UPSE has introduced basics of material science in its syllabus of Engineering Services Examination.
In basic scanning electron microscopy (SEM), a beam of highly energetic (0.1-50 keV) electrons is focused on a sample surface. This can produce several interactions including the emission of secondary electrons, backscattered electrons, photons, and X-rays; excitation of phonons; and diffraction under specific conditions.
Because the bombarding electron beam is scanned in the X-Y plane, an image for each of these different processes can be mapped with a suitable detector. A detector for secondary electrons, standard to all basic SEMs, records topography of the surface under observation with resolution on the order of 1-2 nm and magnification range from 10x to 500,000x. In addition, information on composition, phase, electrical, optical, thermal, and other properties can be mapped with excellent resolution with appropriate detectors. The basic SEM is probably the most versatile instrument in materials science. Beyond being an isolated instrument, it also represents a platform. When combined with scanning probe microscopy (SPM), the electron microscope can be used to further control manipulation of nanostructures or select an area for observation with high precision. In situ phase transitions can be seen when cryogenic or heating stages are installed in the chamber. The combination with a focused ion beam is used for specimen preparation in transmission electron microscopy.
The Measurements and Characterization division at the National Renewable Energy Laboratory is equipped with a JEOL 6320F for very high resolution imaging — provided by a combination of its cold field-emission source, advanced electron-optics and in-lens detector, a variable-pressure Hitachi S-3400N, and a JEOL JSM-5800, equipped with spectrum imaging for cathodoluminescence and a scanning probe microscopy platform. The electron microprobe JEOL 8900L is the preference when quantitative composition of specimens is required.
The following table provides a condensed listing of the systems, techniques, applications, and resolutions of the major SEM instrumentation.
System | Analytical Technique | Typical Applications | Lateral Resolution | Special Features |
---|---|---|---|---|
JEOL 6320F | Field-emission scanning electron microscopy | Micro- and nanoscale characterization of topography, composition and phases | 1.2 nm @ 1.5 kV 2.5 nm @ 1 kV | THERMO EDX, EBIC THERMO EDX, EBIC |
Hitachi S-3400N | Scanning electron microscopy | Microstructure, EBSD | 3.0 nm (HV) 4.0 nm (VP) | Variable pressure (VP), HKL NORDLYS II EBSD |
JEOL JSM-5800 | Scanning electron microscopy | Microstructure, EBIC, cathodoluminescence | 3.5 nm | Cathodoluminescence spectrum imaging, cryostage (15 to 300 K), CCD, InGaAs PDA |
Customized SPM platform | Scanning tunneling microscopy, Atomic force microscopy, Near-field scanning optical microscopy | Nanoscale characterization and manipulation of nanostructures | < 1 nm | Scanning tunneling luminescence, electroluminescence, lateral transport measurements, NFCL |
JEOL JXA-8900L | Electron probe microanalysis | Quantitative compositional analysis | 100 nm to 5 mm | ± 0.2 at.% |
B L Gabriel Sem A User's Manual For Materials Science Book
Main characteristics of SEM
- High-resolution imaging (1-2 nm), high-speed acquisition (30-60 s)
- Live observation of the specimen in 5-6 orders of magnification (10x to 500,000x)
- Nondestructive
- Vacuum compatibility required. Vacuum chamber accommodates specimens up to 4 in. in diameter
- Versatility: multiple modes of operation available
- Readily accessible cross-sectional measurements.
Scanning Electron Microscopy Techniques
High-resolution field-emission basic SEM image of Ge nanowires embedded in GaInP matrix (after etching).
B L Gabriel Sem A User's Manual For Materials Science Pdf
For further information, contact Mowafak Al-Jassim, 303-384-6602.